

UNIVERSITE D'ANGERS

Faculté des Sciences

Intitulé du poste :

Chercheur.euse contractuel.le junior Contrat post-doctoral de droit public

Présentation de l'Université d'Angers

Au cœur d'une région reconnue pour sa qualité de vie, l'Université d'Angers, 3e employeur du territoire, offre un environnement propice à l'épanouissement de ses personnels et étudiants. Membre de la COMUE UBL, l'UA est une université pluridisciplinaire avec un secteur santé, accueillant plus de 25000 étudiants répartis sur 3 campus angevins (Belle-Beille, Saint-Serge et Santé) et 2 campus délocalisés (à Cholet et Saumur). Elle comprend 8 composantes (5 facultés, 1 IUT, 1 école d'ingénieur interne et 1 IAE) et 31 unités et structures fédératives de recherche.

Permettre à ses diplômés de s'épanouir et de trouver un emploi à l'issue de leurs études est une priorité. L'UA ambitionne d'offrir à chacun un accompagnement personnalisé et peut s'enorgueillir du meilleur taux de réussite en licence en France et d'un taux d'insertion de l'ordre de 90%.

Grâce aux nombreux projets innovants qu'elle porte et à son ouverture sur le monde, l'UA permet à chacun d'évoluer dans un environnement stimulant. Son budget annuel est de 156 M€ (dont 123 M€ de masse salariale).

L'UA compte 1134 enseignants et enseignants-chercheurs, 882 personnels administratifs et techniques et près de 2000 vacataires et recherche des acteurs impliqués et audacieux. Vous vous reconnaissez dans les valeurs d'innovation, de citoyenneté, de partage et d'accompagnement ? Rejoignez-nous!

Caractéristiques du contrat :

Date d'affectation sur le poste souhaitée : 1er octobre 2022

Durée du contrat (minimum 1 an) : 12 mois

Quotité de travail : 100%

Rémunération brute mensuelle : 2946.40 €

Lieu d'affectation et localisation géographique si différente : Université d'Angers, Faculté des

Sciences

Nom du projet de recherche :

Bay-Dissymmetrical Perylenediimide-based Polymers for Organic Electronics (DisPol-PDI)

Description du projet de recherche dans lesquels s'inscrivent les activités de recherche confiées à l'agent :

Organic Solar Cells (OSCs) have attracted considerable interest because of their light weight, mechanical flexibility and nontoxicity. The conventional photoactive layer is composed of a polymer or small-molecule donor and a fullerene acceptor. But due to intrinsic limitations of fullerenes, Non-Fullerene Acceptors (NFAs) have been largely explored in recent years. Among them, the iconic perylenediimide (PDI) derivatives present superior light-harvesting capabilities yielding higher photocurrent, readily tunable optical and electrochemical properties. All polymer solar cells (all-PSCs) that utilize conjugated polymers as both the electron-donor and electron-acceptor offer several unique superiorities including excellent morphological stability and mechanical flexibility. Thus PDI-based all-PSCs are believed to be one of the most promising candidates because PDI derivatives present the best trade-off Efficiency, Cost and Stability suitable for industrial scale-up. The DisPol-PDI project aims at investigating the use of nitroarenes as electrophiles in organometallic cross-coupling reactions, a so far very poorly explored area despite its high potential and availability. Our recent results on Suzuki-Miyaura Coupling carried out on mono and dinitro bay-substituted PDIs promise a bright future for such methodology. In particular, this cross-coupling reaction has demonstrated a unique selectivity opening the route to an unprecedented baydesymmetrization of the PDI backbone. In this context, this **DisPol-PDI** project aims at exploring a new design of polymer architectures using this desymmetrization strategy to reach original polymers.

Définition des activités de recherche et des tâches à accomplir :

The position will investigate the organic synthesis and polymer synthesis to reach dissymmetrical PDI-based polymers, their characterizations in solution (UV-Vis, fluorescence, cyclic voltammetry), and in solid state, The project will focus on the preparation of unprecedented PDI-based conjugated and alternated polymers, with a fine control of their structural properties using bay-PDI desymmetrization strategy. The incorporation of these new materials into organic electronic devices will be an important step in the characterization of these new materials. The position requires a strong background in organic chemistry, polymer synthesis and characterizations.

Compétences attendues :

Savoirs:

- Organic and polymer chemistry
- Physico-chemical Characterizations (NMR spectroscopy, Mass spectrometry
- Electrochemistry
- Fundamentals in photochemistry and photophysics
 - Oral communication of results (French and English)
 - Writing skills (French and English)

Savoirs faire:

- Organic synthesis
- Polymer synthesis
- Characterizations (NMR, MS, UV-Vis, Fluorescence, Cyclic voltammetry, SEC)
- Use Chem Draw, Origin, End Note or Zotero software

- Bibliographic research

<u>Savoirs être</u> :

- Work in a team
- Autonomy
- Rigor
- Ability to communicate

Qualifications requises

Diplôme de doctorat de moins de 3 ans

Spécialité : Chimie

Modalités du recrutement et contact

Déposez obligatoirement votre CV, votre lettre de motivation et votre diplôme de doctorat sur le site de l'Université.

Date de fin de dépôt des candidatures : 15 juillet 2022

Cette fiche de poste est consultable jusqu'à la date de clôture des candidatures.

À cette date, elle ne sera plus disponible sur le site.

Eventuellement, votre contact pour tout renseignement complémentaire : au 02 41 73 50 94 ou pietrick.hudhomme@univ-angers.fr