

Systems engineering and Mechatronic

SCHOOL

Polytech Graduate School of Engineering

CAMPUS

Belle-Beille

Engineering 4th year

OPEN TO EXCHANGE STUDENTS

SEMESTER Fall (S1)

>	Degree course: Quality, Innovation and Reliability Engineering					
>	Teaching unit: UE 7-2 Science and technologies					
>	Course language: English					
>	Duration (hours): 40					
>	ECTS: 3					
>	Teacher(s): Nizar Chatti					
>	Assessment:	>	Teaching methods:			
	X Continuous assessment		X Lecture course	8	hours	Case study
	Final exam		Tutorial course		hours	Project
			X Practical work	32	hours	

COURSE DESCRIPTION

Introduction to mechatronicsystems

- _ Methodology for testing in industry
- Introduction to Bond Graph methodology
- _ Integrated design for multiphysical systems
- Causality and systematic generation of behavioural equations
- _ Mathematical modeling and structural analysis
- _ Embedded diagnosis approaches
- _ Conclusion

OBJECTIVES

Acquiring multidsciplinary skills on dynamic modeling of Engineering systems independently of their physical nature - Systematic approach for global analysis of complex multiphysical systems -

Findinginnovativeengineering solutions

Deduction in systematic way state equations and their simulation of industrial systems -

Training with new software tools for integrated design and simulation of industrial systems

PREREQUISITES

Mechanical engineering, electronic engineering, physical modeling, - programming

SELECTIVE BIBLIOGRAPHY

- D. Karnopp, R. Rosenberg "Systems dynamics: a unified approach", John Wiley and sons, 1975, 1991 (2nde édition)
 R. Rosenberg, D. Karnopp "Introduction to physical system dynamics", series in mechanical engineering, Mac Graw
 Hill 1983
- J. Thoma "Introduction to bond graphs and their applications", Pergamon Press, 1975
- N. Chatti et al. "Model-based approach for fault diagnosis using set-membership formulation" International journal of Engineering Applications of Artificial Intelligence, pages 307-319, vol. 55, 2016.
- N. Chatti et al. "Signed Bond Graph for multiple faults diagnosis", International journal of Engineering Applications of Artificial Intelligence, pages 134-147, 2014.
- B. Ould-Bouamama, N. Chatti and A.-L. Gehin "SBG for health Monitoring of Fuel Cell System" ICREGA'14-Renewable Energy: Generation and Applications, Springer International Publishing, pages 73-85, 2014.