

Computer Engineering (OO)

SCHOOL

Polytech Graduate School of Engineering

CAMPUS

Belle-Beille

LEVEL

Engineering 4th year

OPEN TO EXCHANGE STUDENTS

es

>	Degree course: Quality, Innovation and Reliability Engineering				
>	Teaching unit: UE 7-2 Science and technologies				
>	Course language: English				
>	Duration (hours): 16				
>	ECTS: 1				
>	Teacher(s): Alexis Todoskof				
>	Assessment:	> Teaching methods:			
	X Continuous assessment	X Lecture course	4	hours	Case study
	Final exam	Tutorial course		hours	Project
		X Practical work	12	hours	

COURSE DESCRIPTION

Concept of object, message, class, inheritance, method, instance. Programming methodology with an object-oriented language. Object Modeling / UML: Modeling the development process (from needs expression to implementation), System Description (Components, Functionalities and Dynamic Behavior), Logical, Functional and Physical Models. Graphical representation - through case diagrams, sequences, components, states, objects and collaborations.

OBJECTIVES

This course explores the principles of object-oriented programming (encapsulation, inheritance, polymorphism ...) with emphasis on object-oriented design using UML modeling.

The aim of this teaching is twofold:

- on the one hand, to teach students how to break down a large-scale problem into functional elements ("objects"), in the formal framework of the Unified Modeling Language (UML).
- on the other hand, allow them to apply the concepts of object modeling through a programming language

PREREQUISITES

 ${\sf COO,\,POO,\,UML,\,classes,\,objects,\,messages,\,inheritance,\,class\,diagram}$

SELECTIVE BIBLIOGRAPHY

Grady Booch, James Rumbaugh, and Ivar Jacobson. Le guide de l'utilisateur UML. Eyrolles, 2003

- Franck Barbier, UML 2 et MDE, Ingénierie des modèles avec études de cas, 2009
- Pascal Roques. UML2 par la pratique (étude de cas et exercices corrigés). Eyrolles, 5 e édition, 2006