

Signal processing

SCHOOL Polytech Graduate School of Engineering	CAMPUS Belle-Beille	ANGE STUDENTS	CEVEL 3rd year Bachelor's degree SEMESTER Spring (S2)
 > Degree course: Graduate School of Engineering - Automation and Computer Engineering > Teaching unit: UE 6.2 Sciences de l'ingénieur 			
> Course language: English			
> Duration (hours): 20			
> ECTS: 1			
> Teacher(s): Etienne Belin			
> Assessment: >	Teaching methods:		
X Continuous assessment	X Lecture course	6 hours	Case study
Final exam	X Tutorial course	8 hours	Project
	X Practical work	6 hours	

COURSE DESCRIPTION

1) General concepts of signal processing.

2) Frequency representation of signals :

- Fourier series, Fourier transform (FT).
- Dirac delta function : definition, properties, relation to FT.

3) Interaction of signals with linear systems :

- Definition of a linear system, Impulse response, Convolution,
- Transfer function in frequency, Filtering, identification, deconvolution.

4) Sampled signals :

- Shannon sampling condition, z transform, truncation window,
- discrete Fourier transform, fast Fourier transform.

5) Linear digital filters :

- Analysis :

Recurrence equation in time, Impulse response, z transfer function, Frequency transfer function, Example of the integrator filter. Synthesis : Transformation method. -

OBJECTIVES

The bases of signal processing are reviewed, with corresponding applications, as useful for a curriculum in industrial engineering, automation and computer engineering. Special emphasis is placed on deterministic signals, and frequency-domain processing of signals and their interactions with linear systems. These notions are presented both in the realm of continuous-time signals (physical level of the measured signals) and in the realm of discrete-time signals (digital processing). - For each important notion, typical applications are addressed, such as harmonics in electric power systems, modul

PREREQUISITES

Mathematical bases : Differentiation and integration of elementary functions, complex numbers, trigonometric functions.

SELECTIVE BIBLIOGRAPHY

- V. Oppenheim, "Signals and Systems", Prentice Hall. - - V. Oppenheim, "Discrete-Time Signal Processing", Prentice Hall. - - M. H. Hayes, "Schaum?s Outline of Theory and Problems of Digital Signal Processing", McGraw Hill. -