

Modeling and simulation

SCHOOL

Polytech Graduate School of Engineering

CAMPUS

Belle-Beille

3rd year Bachelor's degree

OPEN TO EXCHANGE STUDENTS

SEMESTER Fall (S1)

>	Degree course: Graduate School of Engineering - Automation and Computer Engineering					
>	Teaching unit: UE 5.2 Automatique and Automatisation					
>	Course language: English					
>	Duration (hours): 36					
>	ECTS: 3					
>	Teacher(s): Laurent Hardouin					
>	Assessment:	>	Teaching methods:			
	X Continuous assessment		X Lecture course	6	hours	Case study
	Final exam		X Tutorial course	30	hours	Project
			Practical work		hours	

COURSE DESCRIPTION

Introduction on differential equations and the state representation

- Modeling of compartmentalized systems, biological models (Lotka-Volterra, prey-predator, SIR epidemiological model, etc.).
- Modelling of hydraulic systems (multi-tank systems, dairy supervision application, etc.).
- Modelling of mechanical systems (inverted pendulums, mobile robots, autonomous boats, submarines, etc.) Simulation:
- Euler method
- Runge-Kutta method
- Simulation based on Python, 2D graphical representation -

OBJECTIVES

This course introduces some modelling technics for mechanical systems, hydraulic systems and biological systems. - Numerical methods (such as Euler method or Runge-Kutta method) for the simulation of these systems are also presented and illustrated using the Python language. -

PREREQUISITES

Mathematics and basics of Physics. - Programming: Algorithmics, C Language -