

Industrial automation

SCHOOL

Polytech Graduate School of Engineering

CAMPUS

X Practical work

Belle-Beille

3rd year Bachelor's degree

OPEN TO EXCHANGE STUDENTS

Yes

hours

<u>-</u> ⇒	SEMESTER
<u></u>	Fall (S1)

>	Degree course: Graduate School of Engineering - Automation and Computer Engineering							
>	Teaching unit: UE 5.2 Automatique and Automatisation							
>	Course language: English							
>	Duration (hours): 44							
>	ECTS: 3							
>	Teacher(s): Sébastien Lahaye							
>	Assessment:	> Teachi	ng methods:					
	X Continuous assessment	X Lec	ture course	6	hours	Case study		
	Final exam	X Tut	orial course	18	hours	Project		

COURSE DESCRIPTION

Automated system: definition, structure and components

- Sequential digital systems
- Formal representation
- Modelling and control synthesis
- Programmable logic controllers
- Hardware structure
- Programs processing IEC 61131-3 standard: PLC programming
- Projects architecture
- Data structures
- Programming languages: SFC, LD, ST and LIST
- Motion control
- Theoretical and technical aspects (cams, speed profiles, ?)
- Hardware implementation (selection and sizing of components)
- Software implementation
- Safety
- Challenges and issues
- Integration of safety aspects in an automation project -

OBJECTIVES

Prepare students to become a privileged interlocutor, or even a member, of an automation engineering and design office, able to interact with other offices, suppliers and/or customers.

PREREQUISITES

Fundamentals of electricity - Number systems - Boolean algebra and simplification techniques - Combinatorial logic - Sequential logic - Basics of programming

SELECTIVE BIBLIOGRAPHY

Programmable Logic Controllers, Franck D. Petruzella, McGraw-Hill Education, 2016 - - Programmable Logic Controllers, W. Bolton, Elsevier, 2015 - - Langages de programmation pour systèmes automatisés : norme CEI 61131-3, Nicolas Jouvray, Techniques de l'ingénieur, 2008